sábado, 15 de novembro de 2014

Piso gera eletricidade pela passagem de veículos e pedestres


Fábio Reynol - Agência Fapesp 
Piso gera eletricidade pela passagem de veículos ou pedestres
Pesquisadores da Unesp desenvolvem sistema de geração de energia piezoelétrica que funciona com a passagem de carros e pedestres.[Imagem: Ag.Fapesp]
Ao passar sobre uma placa cerâmica embutida no asfalto, os veículos estimulam o material a produzir energia elétrica. Esta energia, então, alimenta a iluminação de placas e dos semáforos da própria rua ou estrada.
Esta é apenas uma das possíveis aplicações de uma pesquisa feita na Universidade Estadual Paulista (Unesp) que visa ao desenvolvimento de um sistema para o aproveitamento da energia cinética dos carros para a geração de eletricidade.
Energia piezoelétrica
O trabalho começou com o professor Walter Katsumi Sakamoto, do Departamento de Física e Química da Faculdade de Engenharia de Ilha Solteira, que utilizou sua experiência na construção de sensores de radiação e de umidade de solo para elaborar dispositivos piezoelétricos, que geram energia quando são submetidos à pressão ou torção.
Essas tecnologias têm em comum a utilização de compósitos cerâmicos nanométricos em formato de filmes. O pesquisador costumava importar alguns desses materiais, como o polifluoreto de vinilideno (PVDF), o poliéter-éter-cetona (PEEK) e o titanato zirconato de chumbo (PZT).
No entanto, para desenvolver o sensor piezoelétrico, decidiu encontrar similares nacionais. Foi quando convidou a professora Maria Aparecida Zaghete Bertochi, do Departamento de Química Tecnológica da Unesp, em Araraquara, a participar do trabalho.
Fabricação de PZT
"O desafio foi desenvolver um material que apresentasse boa dispersão no polímero e, para isso, precisávamos encontrar o tamanho e a dispersão ideal das partículas", conta Maria Aparecida. Bons resultados forma obtidos pela produção de nanopartículas de titanato zirconato de chumbo (PZT) preparadas por processo químico.
A fim de obter o material, o grupo de Araraquara desenvolveu um novo método de síntese para a cerâmica. O convencional, chamado de mistura de óxidos, exige altas temperaturas, além da submissão do material a um processo de moagem.
Os pesquisadores conseguiram dispensar o tratamento térmico e a dispersão em meio aquoso e obtiveram o PZT a temperaturas de 180ºC. "Nosso método também promove menor contaminação ambiental por chumbo", disse a pesquisadora.
Já o compósito desenvolvido com a matriz PEEK suportou temperaturas de até 360º C e a nanocerâmica ficou bem dispersa, formando um filme compósito bastante homogêneo.
Energia por pressão
O filme não precisa ficar na superfície do solo o que torna o material apto a ser aplicado em condições severas. Os pesquisadores estimam que o dispositivo se manteria operante mesmo sob temperaturas inferiores a 0º C e sob água, como no caso de uma enchente, por exemplo.
Para gerar energia, o equipamento necessita de pressão intermitente, que seria exercida pela passagem dos pneus dos veículos. Essa força provoca uma deformação mecânica no material, que produz energia elétrica.
Sakamoto colocou o novo compósito entre duas placas de acrílico. O material gerou energia toda vez que uma das placas foi apertada manualmente, o que foi comprovado com o acendimento de um led (diodo emissor de luz) conectado ao dispositivo.
"Essa tecnologia poderá gerar energia em áreas movimentadas e não somente a partir da passagem de carros, mas também de pessoas a pé", explicou Sakamoto.
Segundo ele, shoppings centers poderiam utilizar pisos especiais que transformassem os passos dos frequentadores em energia para iluminar os corredores. Algumas estações de metrô no Japão já utilizam pisos do tipo.
Energia limpa
O advento recente das lâmpadas led, que consomem bem menos energia do que as fluorescentes e incandescentes, deverá, segundo Sakamoto, ajudar a impulsionar o uso da tecnologia piezoelétrica. "Sem contar o ganho ambiental por se produzir uma energia limpa", salientou.
"Dentro do próprio automóvel, poderíamos instalar geradores piezoelétricos que se alimentariam dos movimentos dos amortecedores, do giro dos pneus e de outras peças móveis", estima. A fonte alternativa pouparia o motor do carro, atualmente o responsável pela alimentação de seu sistema elétrico.
As aplicações são inúmeras. Um exemplo seria o no uso de compósitos em solas de sapatos, capazes de gerar energia suficiente para alimentar aparelhos celulares e outros eletrônicos portáteis enquanto seus usuários caminham.
Aplicações dos materiais piezoelétricos
Outro emprego da tecnologia piezoelétrica estaria na inspeção estrutural de materiais como, por exemplo, os usados na fuselagem de aeronaves. Sakamoto averiguou que o compósito foi bem-sucedido na detecção de microtrincas em placas de fibra de carbono presente nos aviões.
Ao colar o filme compósito na superfície da placa, a presença de trincas é detectada. Isso ocorre porque as fissuras emitem sinais conhecidos como ondas de Lamb. Nesse caso, o PZT percebe a interferência e gera um sinal que pode ser lido em um osciloscópio.
Entre outras possíveis aplicações desses sensores também estão a detecção de vazamentos de raios X em clínicas e hospitais e a produção de implantes capazes de estimular o crescimento ósseo guiado, o que seria muito útil em tratamentos ortopédicos e implantes dentário.
Supercapacitores
Entre os próximos desafios da pesquisa está o desenvolvimento de matrizes poliméricas mais moles, semelhantes à borracha. "Em teoria, quanto maior a deformação do compósito, maior é o sinal gerado", explicou o professor da Unesp.
Os pesquisadores procuram parceiros que se interessem em investigar novos capacitores que consigam armazenar uma quantidade maior de energia do que os modelos atuais. A nova geração desses dispositivos, apelidados desupercapacitores, é alvo das pesquisas desse tipo de energia.
Sakamoto aponta que a resposta para esse obstáculo estará mais uma vez na nanotecnologia. "O desafio será desenvolver outro nanomaterial com a propriedade primordial de acumular grande quantidade de energia em um tamanho reduzido", disse.